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Abstract 

Simple expressions are obtained for the largest likely 
R factor in X-ray fiber diffraction recently derived 
by Stubbs [Acta  Cryst. (1989), A45, 254-258]. These 
generalize the largest likely R factors obtained by 
Wilson [Acta  Cryst. (1950), 3, 397-399] for centric 
and acentric crystals. Expressions are obtained in 
terms of special functions and as finite series that 
simplify the calculation of R factors. These may be 
useful for further analysis and understanding of the 
effects of particle diameter and symmetry and diffrac- 
tion data resolution on the reliability of structure 
determinations. 

I. Introduction 

The R factor is used routinely in crystallography to 
measure the reliability of structure determinations. 
Interpretation of the R factor obtained for a particular 
structure determination is aided by comparing it with 
the value for a completely wrong structure, i.e. a 
structure that is uncorrelated with the correct struc- 
ture. This is referred to as the 'largest likely R factor', 
and Wilson (1950) showed that its value is 2x/2-2 = 
0.828 for a centric crystal and 2 -x /2=0 .586  for an 
acentric crystal. 

Recent advances in data collection and structure 
refinement in X-ray (and neutron) fiber diffraction 
analysis (Millane, 1988) have led to determinations 
of the structures of complex fibrous molecules and 
assemblies (Millane, Walker, Arnott, Chandrasekaran 
& Ratliff, 1984; Namba & Stubbs, 1985; Park, Arnott, 
Chandrasekaran, Millane & Campagnari, 1987; 
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Stark, Glucksman & Makowski, 1988), and the R 
factor is used as a measure of the reliability of these 
structures also. The molecules in a fiber specimen are 
randomly oriented about the fiber axis so that the 
diffraction pattern is cylindrically averaged. The 
measured intensity is therefore equal to the sum of a 
number of different intensity terms diffracted by a 
single molecule. The number of terms in the sum 
depends on the maximum diameter and symmetry of 
the molecule, and the position in reciprocal space at 
which the intensity is measured. Since the measured 
intensities are sums of individual structure intensities, 
the R factor is in general smaller than in conventional 
crystallography. Stubbs (1989) has recently deter- 
mined the largest likely R factor in fiber diffraction 
analysis as a function of the number of overlapping 
intensity terms. This allows the maximum value of 
the R factor for a particular structure determination 
to be estimated by averaging the values over the 
recorded diffraction pattern where the number of 
overlapping terms varies. This can be applied to both 
continuous diffraction from non-crystalline speci- 
mens and Bragg diffraction from polycrystalline 
specimens. The values obtained allow the R factor 
to be used for an objective assessment of the quality 
of structures determined by fiber diffraction. 

Here, simple analytical and algebraic forms of 
Stubbs's (1989) expression for the largest likely fiber 
diffraction R factor are derived. These may be useful 
for further theoretical analysis of the dependence of 
the R factor on the number of overlapping intensity 
terms, the particle size and symmetry, and resolution 
of the diffraction data. 
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2. Preliminaries 

Putting Wilson's (1950) analysis in the context 
of fiber diffraction (Stubbs, 1989), one finds that 
the R factor for a random distribution of atoms is 
given by 

R = 2 - 4 ( H ( ~ ) ) / ( ~ )  (1) 

where () denotes the ensemble average in reciprocal 
space and ~3 is the length of a 2N-dimensional vector 
f~ whose components are the real and imaginary parts 
of the complex Fourier-Bessel structure factor G, 
(Klug, Crick & Wyckoff, 1958; Millane, 1988). N is 
the number of significant terms G, that contribute to 
the recorded intensity and depends on the maximum 
diameter of the molecule and its symmetry (via the 
selection rule), and the position in reciprocal space 
of the intensity measurement. Any G, terms that are 
real contribute only one dimension to f~. In general, 
therefore, f~ belongs to an m-dimensional space 
where 

m = 2 N - Q  (2) 

and Q of the G, terms are real. H(q3) is defined by 

H( ~) = I xP(x)  dx (3) 
o 

where P ( ~ )  is the probability density function for ~3 
so that (q3)= H(oo) and 

~X3 

( H ( ~ ) ) =  I H(x )P(x )  dx. (4) 
o 

Stubbs (1989) showed that P ( ~ )  is given by 

P(Cg)=(rre)-=/2Vm~W -~ exp (-~32/e), (5) 

where e can be estimated from the atomic scattering 
factors, and V,,, is the ( m -  1)-dimensional surface 
area of the unit sphere in m-dimensional space. Using 
(1)-(5), Stubbs (1989) has calculated the largest 
likely R factor by numerical integration for m up 
to 16. 

3. An analytical expression for the largest likely 
R factor 

The expressions for (~) and (H(~) )  can be evaluated 
as follows. From (3) and (5), 

c o  

(~)=rr-=/Ze'/Zvm ~ x ~ exp (-x2) dx (6) 
0 

and evaluation of the integral [Gradshteyn & Ryzhik 
(1980), equation (3.461)] gives 

7r-m/2+l/28. I / Z g m 2 - m ( m  -- 1)! 
(~) - , m even 

[ ( m / 2 ) - l ] !  
(7) 

=½rr-~/2e' /2Vm[(m/2)-l /2]!,  m odd. 

Similarly, (3)-(5) give 
o o  

(H(~3)) = rr- 'e l /2V2 [ x ''-I exp (_x  2) 
o 

x 

x J" y"  exp (_y2) dy dx. (8) 
o 

Treating (x, y) as Cartesian coordinates and changing 
to polar coordinates (r, 0) allows (8) to be put in the 
form 

¢ o  

(H( (~))= "Fi'-mel/2v 2 I r2m exp ( - r  2) dr 
o 

x cos m-I 0 sin m 0 dO. (9) 
0 

The r integral can be evaluated as above, and the 0 
integral by a trigonometric substitution, although it 
can be written more concisely in terms of the incom- 
plete beta function Bx(m, n) [Gradshteyn & Ryzhik 
(1980), equation (8.391)], giving 

( H ( ~ ) ) =  .n'-"'+'/ze'/22 -2 ' ' - '  V2[(2m - 1) !/(m - 1)!] 

x B,12[(m/2)+ 1/2, m/2]. (10) 

The surface area I'm can be determined by repeated 
application of Wallis's formula [Stubbs (1989); 
Abramowitz & Stegun (1972), equation (6.1.49)], 
giving 

V= = 27rm/Z/[(m/2) -1 ] ! ,  

= 2"-1 rr'/2-1/2[ (m/Z) - 3/2] !/(m - 2)!, 

m even 

m odd. 

(11) 

Combining (1), (7), (10) and (11), and denoting 
the largest likely R factor for m overlapping terms 
by R,,,, gives (for any m) 

R,, = 2 - 2 - ' + 2 m ( 2 m m  - 1)Bl/2[(m/2)+ 1/2, m/2],  

(12) 

where the binomial coefficient 

( 7 )  = m !/[n!(m - n)!]. 

Equation (12) is a concise expression for the largest 
likely R factor. Evaluation of the special function 
can be avoided by using the algebraic expressions 
derived in the next section. 

4. An algebraic expression for the largest likely 
R factor 

An algebraic expression for R m may be obtained 
by expressing the incomplete beta function in 
terms of the hypergeometric function F(a, b; c; z) 
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Table 1. Exact values of the largest likely R factor, 
Rm, for m overlapping (real and imaginary) terms 

m Exact  Approx ima te  

1 2x/2 - 2 0.828 
2 2 - , / 2  0.586 

7 
3 - , / 2 - 2  0.475 

4 
9 

4 2 - - , /2 0"409 
8 

107 
5 - -  x/2 - 2 0.364 

64 
151 

6 2 - - - x / 2  0.332 
128 

835 
7 - - x / 2 - 2  0.306 

512 
1241 

8 2 - - -  x/2 O. 286 
1024 

26291 ,/2 
9 - 2 O. 269 

16384 
40427 ,/2 

10 2 - 0.255 
32768 

[Gradshteyn & Ryzhik (1980), equation (8.391)], 
giving 

x F[(m/2)+ 1/2, 1 - ( m / 2 ) ;  (m/2)+3 /2 ;  1/2]. 

(13) 

The power series for the hypergeometric function 
[Gradshteyn & Ryzhik (1980), equation (9.100)] in 
(13) terminates for m even, giving 

R,,, =2-2-3"/2+5/2m( 2m-1  ) m  

combined into a single series giving 

,,+3 [ 2 m - 1 )  ~'-1~/2 
R m = 2 - 2  - m ~  m ~ ( - 1 ) " ( m + 2 n ) - '  

n=O 

x((m/2)n-1/2)(1-2-m/2-"),  m odd. (16) 

Exact values for Rm can be calculated from (14) and 
(16) and are listed for m up to 10 in Table 1. The 
approximate numerical values so obtained agree with 
those calculated by Stubbs (1989) using numerical 
integration. 

5. Concluding remarks 

The R factors determined by Stubbs (1989) for a 
random distribution of atoms will be useful for 
assessing the reliability of fiber diffraction structure 
determinations. They may also prove useful in other 
applications where overlapped intensity data are used 
in structure determinations, such as in powder diffrac- 
tion, solution scattering and others. Simple analytic 
and algebraic expressions for these R factors have 
been obtained. These may be useful for further theo- 
retical development and quantitative understanding 
of the effects of particle size and symmetry, and 
resolution of the diffraction data, on the reliability of 
structure determinations. The algebraic expressions 
can be used to calculate values of Rm more easily 
than by using numerical integration, facilitating 
simpler calculation of R factors in particular cases. 

I am grateful to Dr Gerald Stubbs for showing me 
his manuscript prior to publication. I also thank the 
US National Science Foundation for support (DMB- 
8606942), and Becky Hitt for word processing. 

m/2-1 ( ( m / 2 ) -  1) 
x ~ ( - 1 ) " ( m + Z n + l ) - '  2-", 

n=O n 

m even. (14) 

For m odd, the series for the hypergeometric function 
in (13) does not terminate. However, using the 
relationships Bx(m, n) = B(m, n ) -  BI-x(n, m) and 
B(m, n) = B(n, m), where B(m, n) = B~(m, n) is the 
beta function, one can put (12) in the form 

2 m -  1) 
R m = 2 -  2-m+2m {n[m/2, (m/2) + 1/2] 

m 

- B1/2[m/2, (m/Z) + 1/2]}. (15) 

The beta functions in (15) can now be written as 
terminating hypergeometric series for m odd, and 
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